- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Fragkiadaki, Katerina (3)
-
Zhang, Yunchu (3)
-
Atkeson, Christopher (1)
-
Atkeson, Christopher G (1)
-
Gan, Chuang (1)
-
Gkanatsios, Nikolaos (1)
-
Held, David (1)
-
Huang, Zhiao (1)
-
Jain, Ayush (1)
-
Li, Yunzhu (1)
-
Lin, Xingyu (1)
-
Pathak, Gaurav (1)
-
Pokle, Ashwini (1)
-
Qi, Carl (1)
-
Tung, Hsiao-Yu (1)
-
Xian, Zhou (1)
-
Yang, Jingyun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Language is compositional; an instruction can ex- press multiple relation constraints to hold among objects in a scene that a robot is tasked to rearrange. Our focus in this work is an instructable scene-rearranging framework that gen- eralizes to longer instructions and to spatial concept compositions never seen at training time. We propose to represent language- instructed spatial concepts with energy functions over relative object arrangements. A language parser maps instructions to corresponding energy functions and an open-vocabulary visual- language model grounds their arguments to relevant objects in the scene. We generate goal scene configurations by gradient descent on the sum of energy functions, one per language predi- cate in the instruction. Local vision-based policies then re-locate objects to the inferred goal locations. We test our model on es- tablished instruction-guided manipulation benchmarks, as well as benchmarks of compositional instructions we introduce. We show our model can execute highly compositional instructions zero-shot in simulation and in the real world. It outperforms language- to-action reactive policies and Large Language Model planners by a large margin, especially for long instructions that involve compositions of multiple spatial concepts. Simulation and real- world robot execution videos, as well as our code and datasets are publicly available on our website: https://ebmplanner.github.io.more » « less
-
Lin, Xingyu; Qi, Carl; Zhang, Yunchu; Huang, Zhiao; Fragkiadaki, Katerina; Li, Yunzhu; Gan, Chuang; Held, David (, Conference on Robot Learning (CoRL))
-
Yang, Jingyun; Tung, Hsiao-Yu; Zhang, Yunchu; Pathak, Gaurav; Pokle, Ashwini; Atkeson, Christopher G; Fragkiadaki, Katerina (, 5th Annual Conference on Robot Learning)We propose a visually-grounded library of behaviors approach for learning to manipulate diverse objects across varying initial and goal configurations and camera placements. Our key innovation is to disentangle the standard image-to-action mapping into two separate modules that use different types of perceptual input:(1) a behavior selector which conditions on intrinsic and semantically-rich object appearance features to select the behaviors that can successfully perform the desired tasks on the object in hand, and (2) a library of behaviors each of which conditions on extrinsic and abstract object properties, such as object location and pose, to predict actions to execute over time. The selector uses a semantically-rich 3D object feature representation extracted from images in a differential end-to-end manner. This representation is trained to be view-invariant and affordance-aware using self-supervision, by predicting varying views and successful object manipulations. We test our framework on pushing and grasping diverse objects in simulation as well as transporting rigid, granular, and liquid food ingredients in a real robot setup. Our model outperforms image-to-action mappings that do not factorize static and dynamic object properties. We further ablate the contribution of the selector's input and show the benefits of the proposed view-predictive, affordance-aware 3D visual object representations.more » « less
An official website of the United States government

Full Text Available